
Coupling coefficients of SO(n) and integrals involving Jacobi and Gegenbauer polynomials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 7323

(http://iopscience.iop.org/0305-4470/35/34/307)

Download details:

IP Address: 171.66.16.107

The article was downloaded on 02/06/2010 at 10:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/34
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 7323–7345 PII: S0305-4470(02)38982-0

Coupling coefficients of SO(n) and integrals involving
Jacobi and Gegenbauer polynomials

Sigitas Ališauskas
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Abstract
The expressions for the coupling coefficients (3j -symbols) for most degenerate
(symmetric) representations of orthogonal groups SO(n) in a canonical basis
(with SO(n) restricted to SO(n− 1)) and different semicanonical or tree bases
(with SO(n) restricted to SO(n′) × SO(n′′), n′ + n′′ = n) are considered,
respectively, in context of integrals involving triplets of the Gegenbauer and
the Jacobi polynomials. Since the directly derived triple-hypergeometric series
do not reveal the apparent triangle conditions of the 3j-symbols, they are
rearranged, using their relation with semistretched isofactors of the second
kind for the complementary chain Sp(4) ⊃ SU(2)× SU(2) and analogy with
the stretched 9j coefficients of SU(2), into formulae with more rich limits
for summation intervals and obvious triangle conditions. The isofactors of
class-one representations of orthogonal groups or class-two representations of
unitary groups (and, of course, the related integrals involving triplets of the
Gegenbauer and the Jacobi polynomials) turn into double sums in the cases of
canonical SO(n) ⊃ SO(n − 1) or U(n) ⊃ U(n − 1) and semicanonical
SO(n) ⊃ SO(n − 2) × SO(2) chains, as well as into the 4F3(1) series
under more specific conditions. Some ambiguities of the phase choice of
the complementary group approach are adjusted, as well as problems with an
alternating sign parameter of SO(2) representations in the SO(3) ⊃ SO(2)
and SO(n) ⊃ SO(n− 2)× SO(2) chains.

PACS numbers: 02.20.Qs, 02.30.Gp

1. Introduction

The coupling (Clebsch–Gordan) coefficients and 3j -symbols (Wigner coefficients) of
orthogonal groups SO(n), together with their isoscalar factors (isofactors), maintain great
importance in many fields of theoretical physics such as atomic, nuclear and statistical physics.
The representation functions in terms of Gegenbauer (ultraspherical) polynomials are well
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known for symmetric (also called most degenerate or class-one) irreducible representations
(irreps) of SO(n) in the spherical coordinates (Vilenkin [1]) on the unit sphere Sn−1. In
particular, the explicit Clebsch–Gordan (CG) coefficients and the isofactors of SO(n) in a
canonical basis for all three symmetrical irreps were considered by Gavrilik [2], Kildyushov
and Kuznetsov [3] (see also [4]) and Junker [5], using the direct [2, 5] or rather complicated
indirect [3, 4] integration procedures.

Norvaišas and Ališauskas [6] also derived triple-sum expressions for related isofactors of
SO(n) in the case of canonical (labelled by the chain of groups SO(n) ⊃ SO(n − 1)) and
semicanonical bases (labelled by irreps l, l′, l′′ of the group chains SO(n) ⊃ SO(n′) ×
SO(n′′), n′ + n′′ = n, in polyspherical, or tree-type, coordinates [1, 4, 7]), exploiting
the transition matrices [8] (also cf [9]) between the bases, labelled by the unitary and
orthogonal subgroups in the symmetrical irreducible spaces of theU(n) group. They observed
[6, 10] that isofactors for the group chain SO(n) ⊃ SO(n′) × SO(n′′) for coupling of the
states of symmetric irreps l1, l2 are the analytical continuation of the isofactors for the chain
Sp(4) ⊃ SU(2)× SU(2),[
l1 l2 [L1L2]
l′1, l

′′
1 l′2, l

′′
2 γ [L′

1L
′
2][L′′

1L
′′
2]

]
(n:n′n′′)

= (−1)φ
[〈−2L′

2−n′

4
−2L′

1−n′

4

〉 〈−2L′′
2−n′′

4
−2L′′

1−n′′

4

〉 〈−2L2−n
4

−2L1−n
4

〉γ
−2l′1−n′

4 ,
−2l′2−n′

4
−2l′′1 −n′′

4 ,
−2l′′2 −n′′

4
−2l1−n

4 , −2l2−n
4

]
(1.1)

(i.e. they coincide, up to phase factor (−1)φ, with the isofactors for the non-compact
complementary group [11–13] chain Sp(4, R) ⊃ Sp(2, R) × Sp(2, R) in the case for
the discrete series of irreps). In particular, in the special multiplicity-free case (for
L2 = L′

2 = L′′
2 = 0, when the label γ is absent), isofactors of SO(n) ⊃ SO(n − 1)

correspond to the semistretched isofactors of the second kind [14] of Sp(4) ⊃ SU(2)×SU(2)
(see also [15, 16]).

However, neither expressions derived by means of direct integration [2, 5], nor expressions
derived by the re-expansion of states of the group chains [6, 10] reveal the apparent triangle
conditions of the 3j -symbols in these triple-sum series. Only the substitution group technique
of the Sp(4) or the SO(5) group [17], used together with an analytical continuation procedure,
enabled an indication [6, 10, 15] of the transformation of the initial triple-sum expressions of
[6] into other forms, more convenient in the cases close to the stretched ones (e.g. for small
values of l1 + l2 − l3, where l3 = L1) and turning into double sums for the canonical basis, the
SO(n) ⊃ SO(n−2)×SO(2) chain and other cases with specified parameters l′′1 + l′′2 − l′′3 = 0
(where l′′3 = L′′

1). More specified isofactors of SO(n) ⊃ SO(n − 1) [16] are related to 6j
coefficients of SU(2) (with some parameters a multiple of 1/4 in the case where n is odd).

Unfortunately, the empirical phase choices of isofactors in [6, 10, 15, 16]1 were not
correlated to the basis states (cf [1, 4, 18]) in terms of the Gegenbauer and the Jacobi
polynomials. Some aspects of the isofactor symmetry problem were also left untouched, e.g.
the problem of the sign change for irreps m of the SO(2) subgroups (which was not revealed
in [1, 4, 18] for the states of SO(3) ⊃ SO(2) and SO(n) ⊃ SO(n − 2)× SO(2) either), as
well as the indefiniteness of the type (2l′′ + n′′ − 2)(n′′ − 4)!! for l′′ = 0, n′′ = 2 in numerator
or denominator.

Presentation of the unambiguous proof of the most preferable and consistent expressions
for the 3j -symbols of orthogonal SO(n) and unitary U(n) groups for decomposition of the
factorized ultraspherical and polyspherical harmonics (i.e. for coupling of the three most
1 Note that the phase factor (−1)(g−e)/2 (where g � e) should be omitted on the right-hand side of expression (5.7)
of [16] for recoupling (6l) coefficients of SO(n), in contrast to (5.5) of the same paper.
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degenerate irreps into a scalar representation in the cases for the canonical and semicanonical
bases) is the main intention of this paper (cf [2–6, 16]) and is impossible without including a
comprehensive review of some adjusted previous results [5, 6, 14, 15], since some references
[2–4, 6, 15] may not be easily accessible nor free from misprints. However, the main goal
of this paper is a strict ab initio rearrangement of the most symmetric (although banal) finite
triple-sum series of the hypergeometric-type in the expressions of definite integrals involving
triplets of the multiplied Gegenbauer and Jacobi polynomials into the less symmetric but more
convenient triple (3.2e), double (3.6c) or single (3.10b) sum series with summation intervals
depending on the triangular conditions of the corresponding 3j -symbols.

The related triple-hypergeometric series, appearing in expressions for semistretched
isoscalar factors of the second kind of the chain Sp(4) ⊃ SU(2)× SU(2), are considered in
section 2, together with their ab initio rearrangement using different expressions [19] for the
stretched 9j coefficients of SU(2). (These triple-sum series may be treated as extensions of
the double-hypergeometric series of Kampé de Fériet-type [20], e.g. considered by Lievens
and Van der Jeugt [21].)

A well known special integral involving a triplet of the Jacobi polynomials P (α,β)k (x)

[22, 23] in terms of the Clebsch–Gordan coefficients of SU(2) (cf [1])

1

2

∫ 1

−1
dx

(
1 + x

2

)(β1+β2+β3)/2 (1 − x

2

)(α1+α2+α3)/2 3∏
a=1

P
(αa,βa)

ka
(x)

=
(

1

2l3 + 1

3∏
a=1

(ka + αa)!(ka + βa)!

ka!(ka + αa + βa)!

)1/2

Cl1l2l3m1m2m3
Cl1l2l3n1n2n3

(1.2)

may be derived only within the framework of the angular momentum theory [24–26], when

la = ka + 1
2 (αa + βa) ma = 1

2 (αa + βa) na = 1
2 (βa − αa)

and

αa = ma − na βa = ma + na ka = la −ma

α3 = α1 + α2 β3 = β1 + β2

are non-negative integers. Unfortunately, quite an elaborate expansion [3, 4] of the product of
two Jacobi or Gegenbauer polynomials in terms of the third Jacobi or Gegenbauer polynomial
within the framework of (1.2) gives rather complicated multiple-sum expressions for integrals
involving the ultraspherical or polyspherical functions in the generic SO(n) or U(n) case.
In section 3, the definite integrals involving triplets of the multiplied unrestrained Jacobi
and Gegenbauer polynomials are initially expressed using the direct (cf [2, 5]) integration
procedure as triple sums in terms of beta and gamma functions. Later they are rearranged to
more convenient forms, with a fewer number of sums, or at least, with a richer structure of the
summation intervals (responding to the triangular conditions of the coupling coefficients) and
a better possibility of summation (especially, under definite restrictions or for some coinciding
parameters).

In section 4, some normalization and phase choice peculiarities of the canonical basis
states and matrix elements of the symmetric (class-one) irreducible representations of
SO(n) are discussed. Then we consider the corresponding expressions of 3j -symbols and
Clebsch–Gordan coefficients of SO(n), factorized in terms of integrals involving triplets of
the Gegenbauer polynomials (preferable in comparison to the results of [5]) and extreme
(summable) 3j -symbols, together with alternative phase systems.

In section 5, the semicanonical basis states and matrix elements of the symmetric (class-
one) irreducible representations of SO(n) for the restriction SO(n) ⊃ SO(n′) × SO(n′′)
(n′ + n′′ = n) are discussed. The corresponding factorized 3j -symbols and Clebsch–Gordan
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coefficients, expressed in terms of integrals involving triplets of the Jacobi polynomials and
extreme 3j -symbols, are considered, together with a special approach to the n′′ = 2 and
n′ = n′′ cases.

The spherical functions for the canonical chain of unitary groups U(n) ⊃ U(n − 1) ×
U(1) ⊃ · · · ⊃ U(2) × U(1) ⊃ U(1) correspond to the matrix elements of the class-two
(mixed tensor) representations of U(n), which include the scalar of subgroup U(n − 1)
(see [4]). The factorized 3j -symbols of U(n), related in this case to isofactors of
SO(2n) ⊃ SO(2n− 2)×SO(2) and expressed in terms of special integrals involving triplets
of the Jacobi polynomials, are considered in section 6.

In the appendix, some special cases of the triple-sum series, used in section 2, are
given, shown as turning into the double- or single-sum series for some coinciding values of
parameters.

2. Semistretched isoscalar factors of the second kind of Sp(4) and their rearrangement

Here the irreducible representations of Sp(4) will be denoted by 〈K�〉, where the pairs of
parameters K = Imax,� = Jmax correspond to the maximal values of irreps I and J of the
maximal subgroup SU(2) × SU(2) (see [14, 17, 27]) and to the irreps of SO(5) with the
highest weight [L1L2] = [K +�,K −�]. Below we consider the triple series shown in [14],
where the following expression for the semistretched isoscalar factors of the second kind (with
the coupled and resulting irrep parameters matching the conditionK1 +K2 = K) for the basis
labelled by the chain Sp(4) ⊃ SU(2)× SU(2) was derived:[〈K1�1〉 〈K2�2〉 〈K1 +K2,�〉
I1J1 I2J2 IJ

]
= (−1)�1+�2−� [(2I1 + 1)(2J1 + 1)(2I2 + 1)(2J2 + 1)(2� + 1)]1/2

×
[ ∏2

a=1(2Ka − 2�a)!(2Ka + 1)!(2Ka + 2�a + 2)!

(2K1 + 2K2 − 2�)!(2K1 + 2K2 + 1)!(2K1 + 2K2 + 2� + 2)!

]1/2

×
 K1

K2

K1 +K2

∣∣∣∣∣∣
�1 I1 J1

�2 I2 J2

� I J

 . (2.1)

Here 11j coefficient [14] K1

K2

K1 +K2

∣∣∣∣∣∣
�1 I1 J1

�2 I2 J2

� I J

 = E(K1 +K2 +�, I, J )∏2
a=1 E(Ka +�a, Ia, Ja)∇(Ka −�a, Ia, Ja)

× ∇(K1 +K2 −�, I, J )

∇(II1I2)∇(JJ1J2)∇(��1�2)
S̃

 K1 I1 J1 �1

K2 I2 J2 �2

K1 +K2 I J �

 (2.2)

(which does not belong to the 3nj coefficients of angular momentum theory) is expressed

in terms of the triple sum S̃[· · ·] and is invariant under permutations of the three right-hand
columns, when the transposition of the first two rows gives the phase factor

(−1)I1+I2−I+J1+J2−J+�1+�2−�. (2.3)
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In (2.2) and further we use the notation

∇(abc) =
[
(a + b − c)!(a − b + c)!(a + b + c + 1)!

(b + c − a)!

]1/2

(2.4a)

=
[
�(a + b − c + 1)�(a − b + c + 1)�(a + b + c + 2)

�(b + c − a + 1)

]1/2

(2.4b)

and

E(abc) = [(a − b − c)!(a − b + c + 1)!(a + b − c + 1)!(a + b + c + 2)!]1/2 . (2.5)

Now we present different expressions of the triple sum S̃[· · ·] that appear in (2.2):

S̃

 K1 j 1
1 j 2

1 j 3
1

K2 j 1
2 j 2

2 j 3
2

K1 +K2 j 1 j 2 j 3

 =
∑

x1,x2,x3

(
j 1 + j 2 + j 3 −K1 −K2∑3

a=1

(
ja1 − xa

) −K1

)

×
3∏
a=1

(−1)xa
(
2ja1 − xa

)
!
(
ja − ja1 + ja2 + xa

)
!

xa!
(
ja1 + ja2 − ja − xa

)
!

(2.6a)

= (
j 1

1 − j 1
2 + j 1

)
!
(
j 1

1 + j 1
2 + j 1 + 1

)
!
(
j 2 − j 2

1 + j 2
2

)
!
(
j 2

1 + j 2
2 + j 2 + 1

)
!

×
∑
x3,u,v

(−1)j
1
1 +j1

2 −j1+x3+u+v
(
2j 3

1 − x3
)
!
(
j 3 − j 3

1 + j 3
2 + x3

)
!

x3!
(
j 3

1 + j 3
2 − j 3 − x3

)
!v!

(
j 1

1 + j 1
2 − j 1 − v

)
!
(
j 1

1 + j 1
2 + j 1 − v + 1

)
!

×
(
2j 1

2 − v
)
!
(
2j 2

1 − u
)
!(

j 1
2 + j 2

2 + j 3 − j 3
1 −K2 + x3 − v

)
!u!

(
j 2

1 + j 2
2 − j 2 − u

)
!

×
(
j 1

1 + j 1
2 + j 2

1 + j 2
2 + j 3 −K1 −K2 − u− v

)
!(

j 2
1 + j 2

2 + j 2 − u + 1
)
!
(
j 1

1 + j 2
1 + j 3

1 −K1 − x3 − u
)
!

(2.6b)

= (−1)K1−j1
1 −j2

1 +j3
1

(
j 3

1 − j 3
2 + j 3

)
!(

j 3
1 + j 3

2 − j 3
)
!

2∏
a=1

(
ja − ja1 + ja2

)
!
(
ja1 + ja2 + ja + 1

)
!

×
∑

x1,x2,x3

2∏
a=1

(
2ja1 − xa

)
!

xa!
(
ja1 + ja2 − ja − xa

)
!
(
ja1 + ja2 + ja − xa + 1

)
!

× (−1)x3
(
2j 3

1 − x3
)
!
(
j 3 − j 3

1 + j 3
2 + x3

)
!

x3!
(
j 3

1 − j 3
2 + j 3 − x3

)
!

(
K2 − j 1

2 − j 2
2 + j 3

2∑3
a=1

(
ja1 − xa

) −K1

)
. (2.6c)

For the rearrangement of (2.6a) into (2.6c) we used different expressions of the stretched 9j
coefficients [19]. We transformed the double sum over x1, x2 in (2.6a) into the sum over u, v
in (2.6b) using relation (C1a)–(C1c) of [19] and later the double sum over v, x3 in (2.6b) into
the sum over x1, x3 in (2.6c) using relation (C1f )–(C1b) of [19] and replacing u by x2. (The
related transformations for the double-hypergeometric series of Kampé de Fériet-type [20] are
also considered by Lievens and Van der Jeugt [21].)

We see that all three summation parameters are restricted by j 1
1 + j 2

1 + j 3
1 − K1 or by

j 1
2 +j 2

2 +j 3
2 −K2 in (2.6a), as well as by j 1

1 +j 2
1 +j 3

1 −K1 or byK1 +K2 −j 1 −j 2 +j 3 in (2.6c)
(respectively, by j 1

2 +j 2
2 +j 3

2 −K2 or byK1 +K2 +j i−jk−j l, (i, k, l = 1, 2, 3) in the different
versions of (2.6c), related by symmetries). In other cases the interval for the linear combination
of summation parameters x1 + x2 + x3 is restricted by j 1 + j 2 + j 3 − K1 − K2 in (2.6a), as
well as by K2 − j 1

2 − j 2
2 + j 3

2 in (2.6c) (respectively, by Ka + j ia − j la + jka , (i, k, l = 1, 2, 3;
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a = 1, 2) in the different versions of (2.6c), related by symmetries). Hence, there are
five possibilities for the completely summable expressions for S̃[· · ·] and seven cases when
they turn into double sums, dissimilar to nine cases, related to the stretched 9j coefficients
[19, 24].

For our further applications, it is more convenient to write relations (2.6a)–(2.6c) (divided
by

∏3
a=1

(
ja − ja1 + ja2

)
!
(
ja + ja1 − ja2

)
!) in another parametrization:

S̃
[
α0, β0 α1, β1 α2, β2 α3, β3

k1 k2 k3

]
=

∑
z1,z2,z3

( 1
2 (α0 + β0)−

∑3
a=1

[
ka + 1

2 (αa + βa)
] − 2

1
2β0 − ∑3

a=1

(
1
2βa + za

) − 1

)

×
3∏
a=1

(−1)za (−ka − αa)za (−ka − βa)ka−za
za!(ka − za)!

(2.7a)

=
(−(2ki + αi + βi + 2)

−(ki + αi + 1)

) ∑
z1,z2,z3

(−1)pi−p
′′
i +z1+z2+z3

(
p′′
i

pi − z1 − z2 − z3

)
× (ki + 1)zi (ki + βi + 1)zi
zi!(2ki + αi + βi + 2)zi

∏
a� =i

(−ka − βa)za (ka + αa + βa + 1)ka−za
za!(ka − za)!

. (2.7b)

We use the Pochhammer symbols

(c)n =
n−1∏
k=0

(c + k) = �(c + n)

�(c)

and binomial coefficients, the arguments of which are non-negative integers. Here 11
parameters of (2.6a) and (2.6c) are replaced by

k1 = I1 + I2 − I k2 = J1 + J2 − J k3 = �1 +�2 −�

α0 = −2K2 − 1 α1 = −2I2 − 1 α2 = −2J2 − 1 α3 = −2�2 − 1

β0 = −2K1 − 1 β1 = −2I1 − 1 β2 = −2J1 − 1 β3 = −2�1 − 1

with the non-negative integers

p′
i = 1

2 (βj + βk − βi − β0) p′′
i = 1

2 (αj + αk − αi − α0)

pi = kj + kk − ki + p′
i + p′′

i (i, j, k = 1, 2, 3)

and arguments of binomial coefficients, although here parameters αj and βj (j = 0, 1, 2, 3)
are negative integers. Actually, expression (2.7b) may be written in three versions.

3. Integrals involving triplets of Jacobi and Gegenbauer polynomials

It is convenient for our purposes to use the two following expressions for the Jacobi polynomials
(cf equation (16) of section 10.8 of [22] and chapter 22 of [23]):

P
(α,β)

k (x) = 2−k∑
m

(−k − α)m(−k − β)k−m
m!(k −m)!

(−1)m(1 + x)m(1 − x)k−m (3.1a)

= (−1)k
∑
m

(−k − α)m(k + α + β + 1)k−m
m!(k −m)!

(
1 − x

2

)k−m
(3.1b)

where α > −1, β > −1.
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We introduce the following expressions for the integrals involving the product of three
Jacobi polynomials P (α1,β1)

k1
(x), P

(α2,β2)

k2
(x) and P

(α3,β3)

k3
(x) with a measure dependent on

α0 > −1, β0 > −1 and integers αa − α0 � 0, βa − β0 � 0 (a = 1, 2, 3):

1

2

∫ 1

−1
dx

(
1 + x

2

)(β1+β2+β3−β0)/2 (1 − x

2

)(α1+α2+α3−α0)/2 3∏
a=1

P
(αa ,βa)

ka
(x)

= Ĩ
[
α0, β0 α1, β1 α2, β2 α3, β3

k1 k2 k3

]
(3.2a)

= (−1)k1+k2+k3 Ĩ
[
β0, α0 β1, α1 β2, α2 β3, α3

k1 k2 k3

]
(3.2b)

=
∑
z1,z2,z3

B

(
1 − 1

2β0 +
3∑
a=1

(
1
2βa + za

)
, 1 − 1

2α0 +
3∑
a=1

(
1
2αa + ka − za

))

×
3∏
a=1

(−1)za (−ka − αa)za (−ka − βa)ka−za
za!(ka − za)!

(3.2c)

=
∑
z1,z2,z3

B

(
1 − 1

2β0 + 1
2

3∑
a=1

βa, 1 − 1
2α0 +

3∑
a=1

(
1
2αa + ka − za

))

×
3∏
a=1

(−1)ka (−ka − αa)za (ka + αa + βa + 1)ka−za
za!(ka − za)!

(3.2d)

= B(ki + αi + 1, ki + βi + 1)
∑
z1,z2,z3

(−1)pi−p
′′
i +z1+z2+z3

×
(

p′′
i

pi − z1 − z2 − z3

)
(ki + 1)zi (ki + βi + 1)zi
zi!(2ki + αi + βi + 2)zi

×
∏

a=j,k;a �=i

(−ka − βa)za (ka + αa + βa + 1)ka−za
za!(ka − za)!

(3.2e)

where the linear combinations (triangular conditions)

p′
i = 1

2 (βj + βk − βi − β0) � 0 p′′
i = 1

2 (αj + αk − αi − α0) � 0

pi = kj + kk − ki + p′
i + p′′

i � 0 (i, j, k = 1, 2, 3)

are integers. These integrals would otherwise vanish. Two first expressions (3.2c) and
(3.2d ) (including (k1 + 1)(k2 + 1)(k3 + 1) terms each) are straightforward to derive using
expressions (3.1a) or (3.1b) and definite integrals (see equation (6.2.1) of [23]) in terms of
beta functions B(x, y) = �(x)�(y)/�(x + y). However, vanishing of integrals (3.2a) under
spoiled triangular conditions is only seen directly in the estimated final expression (3.2e),
which cannot be derived in a similar manner as (3.2c) and (3.2d ).

Although parameters αa, βa (a = 0, 1, 2, 3) accept the mutually excluding values in
the sums S̃[· · ·] and Ĩ[· · ·], we only see the one-to-one correspondence of the analytical
continuation between series (2.7a) and (3.2c), as well as between series (2.7b) and (3.2e),
if the corresponding binomial coefficients of (2.7a) and (2.7b) depending on all negative
(integer or half-integer) parameters are replaced in (3.2c) and (3.2e), respectively, by beta
functions. The possible zeros or poles of S̃[· · ·] for parameters of the definite binomial
coefficients accepting negative-integer (or half-integer) values may be disregarded, if the
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functions S̃[· · ·](−α0−β0−2
−α0−1

)−1
and Ĩ[· · ·]B−1(α0 + 1, β0 + 1) are considered. Observing that

the ratio of the binomial coefficients(−a − b − 2

−a − 1

)(−c − d − 2

−c − 1

)−1

with negative integers a, b, c, d in equations (2.7a) and (2.7b) turns into ratio of the beta
functions

B(a + 1, b + 1)

B(c + 1, d + 1)

with parameters a, b, c, d � − 1
2 in relation (3.2c)–(3.2e), expression (3.2e) for integral

Ĩ[· · ·] is proved. An advantage of our new expression (3.2e) is in the restriction of all three
summation parameters z1 + z2 + z3 by the triangular condition pi , in contrast to (3.2c) or
(3.2d ). Alternatively, the linear combination of summation parameters pi − z1 − z2 − z3 � 0
is restricted in addition by p′′

i (or by p′
i , if some symmetry is applied) only in the ith

version of (2.6a). Hence, there are three cases when expressions for integral Ĩ[· · ·] are
completely summable and six cases when they turn into double sums, in addition to the double
sums which appear for ka = 0 (a = 1, 2, 3). However, factorization of (3.2c)–(3.2e) for
α0 = β0 = 0, αi = αj + αk, βi = βj + βk into a product of two CG coefficients of SU(2) is
not straightforward to prove.

For α0 = 0 and α3 = α1 + α2, the integrals involving the product of three Jacobi
polynomials (3.2e) turn into double sums (3.3a) or (3.3b)

Ĩ
[

0, β0 α1, β1 α2, β2 α1 + α2, β3

k1 k2 k3

]
= B(k3 + α1 + α2 + 1, k3 + β3 + 1)

×
∑
z1,z2

(k3 + 1)p3−z1−z2(k3 + β3 + 1)p3−z1−z2

(p3 − z1 − z2)!(2k3 + α1 + α2 + β3 + 2)p3−z1−z2

×
2∏
a=1

(−ka − βa)za (ka + αa + βa + 1)ka−za
za!(ka − za)!

(3.3a)

= B (k1 + α1 + 1, k1 + β1 + 1)

×
∑
z2,z3

(
k2 + α2

z2

)
(−1)α2−z2(k2 + α2 + β2 + 1 − z2)k2(−k3 − β3)z3

z3!(k3 − z3)!k2!

× (k3 + α3 + β3 + 1)k3−z3(k1 + 1)p1−z2−z3(k1 + β1 + 1)p1−z2−z3

(p1 − z2 − z3)!(2k1 + α1 + β1 + 2)p1−z2−z3

(3.3b)

both related to the Kampé de Fériet [20] functions F 2:2
2:1 . It is evident that the triple series

(3.2c) and (3.2d ) with α0 = 0 may be also extended to the negative-integer values of α2,

Ĩ
[

0, β0 α1, β1 α2, β2 α3, β3

k1 k2 k3

]
= (−1)α2

(k2 + α2)!(k2 + β2)!

k2!(k2 + α2 + β2)!
Ĩ
[

0, β0 α1, β1 −α2, β2 α3, β3

k1 k2 + α2 k3

]
(3.4)

with invariant values of p1 and p3. Hence, using (3.3a) for the right-hand side of (3.4), the
left-hand side of (3.4) may be expressed as a double sum for α3 = α1 − α2 and (3.3b) may be
derived after the interchange of k1, α1, β1 and k3, α3, β3.
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The Gegenbauer (ultraspherical) polynomialCpk (cos θ)may be expressed as a finite series
[22, 23], or in terms of a special Jacobi polynomial (cf [22])

C
p

k (cos θ) =
[k/2]∑
m=0

(−1)m(p)k−m
m!(k − 2m)!

2k−2m cosk−2m θ (3.5a)

= (2p)k
(p + 1/2)k

P
(p−1/2,p−1/2)
k (cos θ) (3.5b)

where [k/2] is an integer part of k/2 and (3.5b) includes almost twice as many terms as (3.5a).
Now we may express the integrals involving the product of three Gegenbauer polynomials

C
l′1+n/2−1
l1−l′1 (x), C

l′2+n/2−1
l2−l′2 (x) and C

l′3+n/2−1
l3−l′3 (x) as follows:∫ π

0
dθ (sin θ)l

′
1+l′2+l′3+n−2

3∏
i=1

C
l′i+n/2−1
li−l′i (cos θ)

=
∑
z1,z2,z3

B

(
1
2 (l

′
1 + l′2 + l′3 + n− 1), 1

2 +
3∑
a=1

[
1
2 (la − l′a)− za

])

×
3∏
i=1

(−1)zi2li−l
′
i−2zi (l′i + n/2 − 1)li−l′i−zi

zi!(li − l′i − 2zi)!
(3.6a)

= (−1)k1+k2+k3

3∏
a=1

(l′a + n/2 − 1)(la−l′a+δa)/2

(1/2)(la−l′a+δa)/2

× Ĩ
[− 1

2 ,
n−3

2 δ1 − 1
2 , l

′
1 + n−3

2 δ2 − 1
2 , l

′
2 + n−3

2 δ3 − 1
2 , l

′
3 + n−3

2
1
2 (l1 − l′1 − δ1)

1
2 (l2 − l′2 − δ2)

1
2 (l3 − l′3 − δ3)

]
(3.6b)

= (−1)(l
′
j+l

′
k−l′i )/2B

(
1
2 (li − l′i + δi + 1), 1

2 (li + l′i − δi + n− 1)
)

×
3∏
a=1

(l′a + n/2 − 1)(la−l′a+δa)/2

(1/2)(la−l′a+δa)/2

∑
z1,z2,z3

(
(δj + δk − δi)/2

(lj + lk − li)/2 − z1 − z2 − z3

)

×
∏
a �=i

(−(la + l′a − δa + n− 3)/2)za ((la + l′a + δa + n)/2 − 1)(la−l′a−δa)/2−za
za!((la − l′a − δa)/2 − za)!

× (−1)z1+z2+z3
((li − l′i − δi)/2 + 1)zi ((li + l′i − δi + n− 1)/2)zi

zi!(l′i + n/2)zi
(3.6c)

= Ĩ
[
α0, α0 l′1 + α0, l

′
1 + α0 l′2 + α0, l

′
2 + α0 l′3 + α0, l

′
3 + α0

l1 − l′1 l2 − l′2 l3 − l′3

]

× 2l
′
1+l′2+l′3+n−2

3∏
i=1

(2l′i + n− 2)li−l′i
(l′i + (n− 1)/2)li−l′i

,
(
with α0 = n−3

2

)
(3.6d)

where 1
2 (lj + lk − li ) � 0 and 1

2 (l
′
j + l′k − l′i ) � 0 are integers. In accordance with (3.6c),

these integrals would otherwise vanish. Expressions (3.6a) (cf [5]) and (3.6d ) (cf [2]) are
derived directly (using definite integrals (6.2.1) of [23] in terms of beta functions). Further
(3.6a) is recognized as consistent with a particular case of (3.2d )2 denoted by (3.6b) and
re-expressed, in accordance with (3.2d ) and (3.2e), in the most convenient form as (3.6c),
where δ1, δ2, δ3 = 0 or 1 (in fact either δ1 = δ2 = δ3 = 0 or δa = δb = 1, δc = 0) and
1
2 (la − l′a − δa) (a = 1, 2, 3) are integers.
2 This is the reason why (3.2d ) is introduced.
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Expression (3.6a) includes 1
8

∏3
a=1(la − l′a − δa + 2) terms, when (3.6d ), used together

with (3.2c) or (3.2d ), each include
∏3
a=1(la − l′a + 1) terms; otherwise the number of terms in

the ith version of the most convenient formula (3.6c) never exceeds

Ai = (p′′
i + 1)min

[
1
2 (pi + 1)(pi − p′′

i + 2), 1
4

∏
a �=i
(la − l′a − δa + 2)

]
(3.7)

wherep′′
i = 1

2 (δj+δk−δi) = 0 or 1,pi = 1
2 (lj +lk−li ) is an integer and i, j, k is a transposition

of 1, 2, 3. This number of terms decreases in comparison to (3.7) in the intermediate region
1
2 min(lj − l′j − δj , lk − l′k − δk) < pi <

1
2 (lj − l′j − δj + lk − l′k − δk).

Actually, expression (3.6c) is related to the Kampé de Fériet [20] function F 2:2
2:1 (for

p′′
i = 0) or to the sum of two such functions (when p′′

i = 1). Hence, after comparing three
different versions of (3.6c), the rearrangement formulae of special Kampé de Fériet functions
F 2:2

2:1 can be derived.
Now we consider more specified integrals involving several Gegenbauer polynomials.

Initially, using (3.6c) with i = 3 and z2 = δ2 = 0, z3 = 1
2 (l1 + l′ − l3)− z1, we take a special

integral involving the product of two Gegenbauer polynomials (where a third trivial polynomial
C
l′+n/2−1
0 (x) = 1 may be inserted) in terms of the summable balanced (Saalschützian) 3F2(1)

series (cf [28, 29]) and write∫ π

0
(sin θ)2l

′+n−2C
l′+n/2−1
li−l′ (cos θ)Cl

′+n/2−1
l′−l′ (cos θ)Cn/2−1

l3
(cos θ) dθ

=
∫ π

0
(sin θ)2l

′+n−2C
l′+n/2−1
li−l′ (cos θ)Cn/2−1

l3
(cos θ) dθ (3.8a)

= (−1)(l3−l1+l′)/2πl′!(l1 + l′ + n− 3)!

22l′+n−3(l1 − l′)!(J ′ − l1)!(J ′ − l3)!�(n/2 − 1)

× �(J ′ − l′ + n/2 − 1)

�(l′ + n/2 − 1)�(J ′ + n/2)
(3.8b)

where J ′ = 1
2 (l1 + l′ + l3).

Using the expansion formula of the product of two Gegenbauer polynomials as the zonal
spherical functions

C
p

l (x)C
p

k (x) =
l+k∑

n=|l−k|

(n + p)�(g + 2p)�(g − n + p)

�2(p)�(g + p + 1)�(n + 2p)�(g − n + 1)

× �(g − l + p)�(g − k + p)

�(g − l + 1)�(g − k + 1)
Cpn (x) (3.9)

in terms of the third polynomial of the same type (cf [1]), where g = 1
2 (l + k + n) is an

integer and l + k − n is even, the special integral involving three Gegenbauer polynomials
(with coinciding subscripts in two cases) may also be expanded in terms of integrals (3.8b)
and may be presented as follows:∫ π

0
(sin θ)2l

′+n−2C
l′+n/2−1
l1−l′ (cos θ)Cl

′+n/2−1
l2−l′ (cos θ)Cn/2−1

l3
(cos θ) dθ

= πl′!
22l′+n−3�3(n/2 − 1)�(l′ + n/2 − 1)

×
l1+l2−l′∑

k=|l1−l2|+l′

(−1)(l3+l′−k)/2(k + n/2 − 1)

∇2 (l′/2, l3/2 + n/4 − 1, k/2 + n/4 − 1)

× ∇2
(
(l1 + l′ + n)/2 − 2, l2/2 + n/4 − 1, k/2 + n/4 − 1

)
∇2 ((l1 − l′)/2, l2/2 + n/4 − 1, k/2 + n/4 − 1)

(3.10a)
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= πl′!
∏3
a=1 �(J − la + n/2 − 1)

22l′+n−3�(n/2 − 1)�(l′ + n/2 − 1)�(J + n/2)

×
∑
u

(J + l′ + n− 3 − u)!

u!(l′ − u)!(J − l1 − u)!(J − l2 − u)!(J − l3 − l′ + u)!

× (−1)u

�(n/2 − 1 + u)�(l′ + n/2 − 1 − u)
(3.10b)

where J = 1
2 (l1 +l2 +l3) and the gamma functions under the summation sign in the intermediate

formula (3.10a) (which is equivalent to (15) of [30]) are included in the asymmetric triangle
coefficients (2.4b). Finally, the sum in (3.10a) corresponds to the very well poised 7F6(1)
hypergeometric series (which may be rearranged using Watson’s transformation formula
(2.5.1) of [29] or (6.10) of [31] into balanced 4F3(1) hypergeometric series) or to the 6j
coefficient {

l′ + 1
2n− 2 1

2 (l1 + n)− 2 1
2 l1

1
2 l3 + 1

4n− 1 1
2 l2 + 1

4n− 1 1
2 l2 + 1

4n− 1

}
(3.11)

with standard (for n even) or multiples of 1/4 parameters, in accordance with expression (C3)
of the 6j coefficient [32] in terms of (2.4a). Using the most symmetric (Racah) expression
[24, 25] for (3.11), the final expression (3.10b) with a single sum is derived. Intervals of
summation are restricted by min(l′, J − l1, J − l2, J − l3) and, of course, (3.10b) coincide
with result of Vilenkin [1] for l′ = 0.

Comparing expansion (3.6c) of integrals involving triplets of the Gegenbauer polynomials
with (3.6d ), we may write an expression for integrals involving triplets of special Jacobi
polynomials, with mutually equal superscripts,

Ĩ
[
α0, α0 α1, α1 α2, α2 α3, α3

k1 k2 k3

]
= [1 + (−1)pi ]B(1/2, ki + αi + 1)

2k1+k2+k3+α1+α2+α3−α0+2(1/2)(kj+δj )/2(1/2)(kk+δk)/2

×
∑
z1,z2,z3

(−1)p
′
i+(kj+δj+kk+δk)/2+z1+z2+z3

(
(δj + δk − δi)/2

pi/2 − z1 − z2 − z3

)

×
∏

a=j,k;a �=i

(−ka − αa)(ka+δa)/2+za (αa + (ka + δa + 1)/2)(ka−δa)/2−za
za! ((ka − δa)/2 − za)!

×
(
(ki − δi)/2 + zi

zi

)
(αi + (ki − δi)/2 + 1)zi

(αi + 3/2)zi
. (3.12)

Here

pi = kj + kk − ki + p′
i + p′′

i
1
2 (ki − δi) δi = 0 or 1,

p′
i = p′′

i = 1
2 (αj + αk − αi − α0) (i, j, k = 1, 2, 3)

are non-negative integers.
Comparing expansion (3.10b) of integrals involving more specified triplets of the

Gegenbauer polynomials with (3.6d ), we may also write an expression for integrals involving
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triplets of special Jacobi polynomials,

Ĩ
[
α0, α0 α1, α1 α1, α1 α0, α0

k1 k2 k3

]
= [1 + (−1)p1]22α0−2(α1 − α0)!�(α1 + 1/2)

∏3
a=1 �(pa/2 + α0 + 1/2)

�(1/2)� ((k1 + k2 + k3)/2 + α1 + 3/2)

× �(α1 + 1 + k1)�(α1 + 1 + k2)�(α0 + 1 + k3)

�(2α1 + 1 + k1)�(2α1 + 1 + k2)�(2α0 + 1 + k3)

×
∑
u

((k1 + k2 + k3)/2 + 2α1 − u)!

u!(α1 − α0 − u)!(p1/2 − u)!(p2/2 − u)!(p3/2 + α0 − α1 + u)!

× (−1)u

�(α0 + 1/2 + u)�(α1 + 1/2 − u)
(3.13)

in terms of the balanced (Saalschützian) 4F3(1)-type series [28, 29]. Here

pi = kj + kk − ki + 2p′
i p′

1 = p′
2 = 0 p′

3 = α1 − α0

are integers.

4. Canonical basis states and coupling coefficients of SO(n)

The canonical basis states of the symmetric (class-one) irreducible representation l = l(n) for
the chain SO(n) ⊃ SO(n − 1) ⊃ · · · ⊃ SO(3) ⊃ SO(2) are labelled by the (n − 2)-tuple
M = (l(n−1), N) = (l(n−1), . . . , l(3), m(2)) of integers

l(n) � l(n−1) � · · · � l(3) � |m(2)|. (4.1)

The dimension of the representation space is

d
(n)

l = (2l + n− 2)(l + n− 3)!

l!(n− 2)!
. (4.2)

Special matrix elementsDn,l
M0(g) of the SO(n) irreducible representation l(n) = lwith zero

for the (n−2)-tuple (0, . . . , 0) depend only on the rotation (Euler) angles θn−1, θn−2, . . . , θ2, θ1

(coordinates on the unit sphere Sn−1) and may be factorized as

D
n,l
M0(g) = t

n,l
l′0 (θn−1)D

n−1,l′
N0 (g′). (4.3)

Here Dn−1,l′
N0 (g′) are the matrix elements of SO(n − 1) irrep l(n−1) = l′ (with coordinates on

the unit sphere Sn−2). Special matrix elements of SO(n) (n > 3) irreducible representation
l(n) = l with the SO(n − 1) irrep labels l(n−1) = l′ and 0 and SO(n − 2) label l(n−2) = 0
for rotation with angle θn−1 in the (xn, xn−1) plane are written in terms of the Gegenbauer
polynomials as follows:

t
n,l
l′0 (θn−1) =

[
l!(l − l′)!(n− 3)!(l′ + n− 4)!(2l′ + n− 3)

l′!(l + l′ + n− 3)!(l + n− 3)!

]1/2

× (n/2 − 1)l′2
l′ sinl

′
θn−1C

l′+n/2−1
l−l′ (cos θn−1) (4.4)

(see [1]) and corresponds to the wavefunction 
c
k,l′(θ) = 


l+(n−3)/2
l−l′,l′ (θ) of the tree technique

(of the type 2b, see (2.4) of [18]) with a factor of[
�((n− 1)/2)

√
πd

(n−1)
l′

�(n/2)d(n)l

]1/2
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for appropriate normalization in the case of integration over the group volume (0 � θ � π)

with measure B−1((n− 1)/2, 1/2) sinn−2 θ dθ . The remaining Euler angles are equal to 0 for
the matrix element (4.4). In the case of SO(3), we obtain

D
3,l
m0(θ2, θ1) = (−1)(l

′−m)/2t3,ll′0 (θ2) eimθ1 l′ = |m| (4.5)

in accordance with the relation [1] between the associated Legendre polynomials Pml (x)
and the special Gegenbauer polynomials Cm+1/2

l−m (x) and the behaviour of Pml (x) under the
reflection of m.

The corresponding 3j -symbols for the chain SO(n) ⊃ SO(n − 1) ⊃ · · · ⊃ SO(3) ⊃
SO(2) (denoted by brackets with a simple subscript n and labelled by sets Ma = (l′a,Na))
may be factorized as follows:(
l1 l2 l3

M1 M2 M3

)
n

=
(
l1 l2 l3

0 0 0

)−1

n

∫
SO(n)

dgDn,l1
M10(g)D

n,l2
M20(g)D

n,l3
M30(g) (4.6a)

=
(
l1 l2 l3

l′1 l′2 l′3

)
(n:n−1)

(
l′1 l′2 l′3
N1 N2 N3

)
n−1

. (4.6b)

Here the isoscalar factors of 3j -symbols for the restriction SO(n) ⊃ SO(n− 1) are denoted
by brackets with a composite subscript (n : n − 1) and are expressed in terms of integrals
(3.6a) or (3.6c) involving triplets of the Gegenbauer polynomials,(
l1 l2 l3

l′1 l′2 l′3

)
(n:n−1)

=
(
l1 l2 l3

0 0 0

)−1

n

(
l′1 l′2 l′3
0 0 0

)
n−1

×
[
� ((n− 1)/2)

π5/2�(n/2)

]1/2 3∏
a=1

N (n:n−1)
la ;l′a ,δa

[
d
(n−1)
l′a

d
(n)
la

]1/2

×
∫ π

0
dθ (sin θ)l

′
1+l′2+l′3+n−2

3∏
i=1

C
l′i+n/2−1
li−l′i (cos θ) (4.7)

where

N (n:n−1)
la ;l′a ,δa = 2l

′
a+n/2−2�(l′a + n/2 − 1)

[
(la − l′a)!(2la + n− 2)

(la + l′a + n− 3)!

]1/2

(4.8)

are normalization factors and particular 3j -symbols(
l1 l2 l3

0 0 0

)
n

= (−1)ψn
1

�(n/2)

[
(J + n− 3)!

(n− 3)!�(J + n/2)

×
3∏
i=1

(li + n/2 − 1) �(J − li + n/2 − 1)

d
(n)
li
(J − li)!

]1/2

(4.9)

(vanishing for J = 1
2 (l1 + l2 + l3) half-integer) are derived in [5] (see also special Clebsch–

Gordan coefficients [3, 6]). Equation (4.7) together with (3.6a) is equivalent to the result
of [5], but its most convenient form is obtained when the special integral is expressed by
means of a double-sum expression (3.6c) (for i = 1, 2 or 3, minimizing (3.7)), which ensure
its finite rational structure for a fixed shift 1

2 (l1 + l2 − l3) of parameters. In the case of
l′i = 0, expression (3.10b) for the special integral is more convenient, in accordance with [16].
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In (4.9), J − li (i = 1, 2, 3) and J are non-negative integers and ψ3 = J , in accordance with
angular momentum theory [24, 25]. We may also take

ψn = J (4.10)

(see [5]) for n � 4 in order to obtain the isofactors (4.7) positive where the maximal values of
parameters l′1 = l1, l

′
2 = l2, l

′
3 = l3.

Only by taking into account the phase factor (−1)(l
′−m)/2 of (4.5), can we obtain the

consistent signs of the usual Wigner coefficients (3j -symbols)(
l1 l2 l3

l′1 l′2 l′3

)
(3:2)

=
(
l1 l2 l3

m1 m2 m3

)
(4.11)

of SO(3) or SU(2) (where l′a = |ma| and m1 +m2 +m3 = 0), with(
l′1 l′2 l′3
0 0 0

)
2

= δmax(l′1,l
′
2,l

′
3),(l

′
1+l′2+l′3)/2(−1)(l

′
1+l′2+l′3)/2 (4.12)

consequently appearing, in (4.7) for n = 3.3

We may write (cf [5]) the following dependence between special Clebsch–Gordan
coefficients (denoted by square brackets with subscript) and the 3j -symbols of SO(n):[
l1 l2 l3

M1 M2 M3

]
n

[
l1 l2 l3

0 0 0

]
n

≡ 〈l1M1; l2M2|(l1l2)l3M3〉n〈(l1l2)l30|l10; l20〉n

= d
(n)
l

∫
SO(n)

dgDn,l1
M10(g)D

n,l2
M20(g)D

n,l3
M30(g) (4.13a)

= d
(n)

l (−1)l3−m3

(
l1 l2 l3

M1 M2 M3

)
n

(
l1 l2 l3

0 0 0

)
n

(4.13b)

where the (n − 2)-tuple M3 is obtained from the (n − 2)-tuple M3 after reflection of the last
parameter m3. Then in the phase system with ψn = J , we obtain the following relation for
the isofactors of CG coefficients in the canonical basis:[
l1 l2 l3

l′1 l′2 l′3

]
(n:n−1)

= (−1)l3−l
′
3

 d
(n)
l3

d
(n−1)
l′3

1/2 (
l1 l2 l3

l′1 l′2 l′3

)
(n:n−1)

(4.14)

which, together with (4.7), (4.9), (4.10) and (3.6c) or (3.6b) substituted by (3.2c), allows us
to obtain expressions for isofactors of SO(n) ⊃ SO(n − 1) derived in [6] and satisfying the
same phase conditions.

However, as was noted in [10], the choice (4.10) of ψn does not give the correct phases
for special isofactors of SO(4) [33] in terms of 9j coefficients of SU(2) [24] for isofactors of
SO(5) ⊃ SO(4), as considered in [14, 17, 27]. The contrast of the phases is caused by the
fact that the signs of the matrix elements of infinitesimal operators

Ak,k−1 = xk
∂

∂xk−1
− xk−1

∂

∂xk
k = 3, . . . , n

(with the exception of A2,1) between the basis states [1] of SO(n) in terms of Gegenbauer
polynomials (in xk/rk, r2

k = x2
1 + · · · + x2

k variables) are opposite to the signs of the standard
(Gel’fand–Tsetlin) matrix elements [34–36]. We eliminate this difference of phases and our
results match with the isofactors for decomposition of the general and vector irrepsmn ⊗ 1 of
3 Of course, in this case the usual expressions [1, 24, 25] of the Clebsch–Gordan or Wigner coefficients of SU(2)
are more preferable in comparison to equation (4.7).
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SO(n) [36, 37] (specified also in [38, 39]) after we multiply isofactors of CG coefficients for
the restriction SO(n) ⊃ SO(n− 1)(n � 4), i.e. the left-hand side of (4.14), by

(−1)(l1+l2−l3−l′1−l′2+l′3)/2

(cf [10]), i.e. after we omit the phase factors (−1)ψn and (−1)ψn−1 in both the auxiliary 3j -
symbols of (4.7) and (−1)l3−l

′
3 in relation (4.14), again keeping the isofactors (4.14) with the

maximal values of parameters l′1 = l1, l
′
2 = l2, l

′
3 = l3 for this restriction positive. In the both

phase systems of the factorized SO(n) CG coefficients (3j -symbols) the last factors coincide
with the usual CG coefficients (3j -symbols) of angular momentum theory [24, 25].

5. Semicanonical bases and coupling coefficients of SO(n)

Furthermore, going to the semicanonical basis of the symmetric (class-one) irreducible
representation l for the chain SO(n) ⊃ SO(n′)×SO(n′′) ⊃ SO(n′ −1)×SO(n′′ −1) ⊃ · · ·,
respectively, we introduce special matrix elements Dn:n′,n′′;l

l′M ′,l′′M ′′;0(g) depending only on the
rotation angles θ ′

n′−1, . . . , θ
′
1 and θ ′′

n′′−1, . . . , θ
′′
1 of subgroups SO(n′) and SO(n′′) and the

rotation angle θc in the (xn, xn′) plane, with the second matrix index taken to be zero as the
(n−2)-tuple (0, . . . , 0) for the scalar of SO(n−1). These matrix elements may be factorized
as follows:

D
n:n′,n′′ ;l
l′M ′,l′′M ′′;0(g) = t

(n)l

(n′)l′0,(n′′)l′′0;(n−1)0(θc)D
n′,l′
M ′0(g

′)Dn′′,l′′
M ′′0 (g

′′). (5.1)

Instead of the wavefunction
b,a
k,l′′,l′(θc) = 


l′′+n′′/2−1,l′+n′/2−1
(l−l′−l′′)/2,l′′,l′ (θc) (of the type 2c, see (2.6)

of [18]) of the tree technique after renormalization with factor[
�(n′/2)�(n′′/2)d(n

′)
l′ d

(n′′)
l′′

2�(n/2)d(n)l

]1/2

for the integration over the group volume (0 � θc � π/2) with measure

2B−1(n′/2, n′′/2) sinn
′′−1 θc cosn

′−1 θc dθc

we obtain special matrix elements of the SO(n) irreducible representation l in terms of the
Jacobi polynomials

t
(n)l

(n′)l′0,(n′′)l′′0;(n−1)0(θc) = (−1)ϕn′n′′
[

d
(n′)
l′ d

(n′′)
l′′ �(n/2)

d
(n)

l �(n′/2)�(n′′/2)

]1/2

N (n:n′,n′′)
l:l′,l′′

× sinl
′′
θc cosl

′
θcP

(l′′+n′′/2−1,l′+n′/2−1)
(l−l′−l′′)/2 (cos 2θc) (5.2)

where the left-hand SO(n′) × SO(n′′) labels are l′, l′′ (n′ + n′′ = n), the left-hand
SO(n′ − 1) × SO(n′′ − 1) and right-hand SO(n − 1) labels are 0 for rotation with angle
θc in the (xn, xn′) plane. Here phase ϕn′n′′ = 0, unless n′′ = 2 or n′ = 2, when the left-
hand side should be replaced, respectively, by t (n)l(n−2)l′0,(2)m′′ ;(n−1)0(θc) with l′′ = |m′′| or by

t
(n)l

(2)m′,(n−2)l′′0;(n−1)0(θc) with l′ = |m′| and

ϕn′n′′ = 1
2 [δn′′2(l

′′ −m′′) + δn′2(l
′ −m′)]

on the right-hand side and normalization factor

N (n:n′,n′′)
l:l′,l′′ =

[
(l + n/2 − 1)((l − l′ − l′′)/2)!�((l + l′ + l′′ + n− 2)/2)

�((l − l′ + l′′ + n′′)/2)�((l + l′ − l′′ + n′)/2)

]1/2

. (5.3)
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The 3j -symbols for the chain SO(n) ⊃ SO(n′)×SO(n′′) ⊃ SO(n′−1)×SO(n′′ −1) ⊃
· · ·, labelled by the sets Mi = (l′i , N

′
i ; l′′i , N ′′

i ) may be factorized as follows:(
l1 l2 l3

M1 M2 M3

)
n

=
(
l1 l2 l3

l′1, l
′′
1 l′2, l

′′
2 l′3, l

′′
3

)
(n:n′n′′)

×
(
l′1 l′2 l′3
N ′

1 N ′
2 N ′

3

)
n′

(
l′′1 l′′2 l′′3
N ′′

1 N ′′
2 N ′′

3

)
n′′
. (5.4)

Now the SO(n) ⊃ SO(n′)× SO(n′′) isofactor of 3j -symbol is expressed as follows:(
l1 l2 l3

l′1, l
′′
1 l′2, l

′′
2 l′3, l

′′
3

)
(n:n′n′′)

=
(
l1 l2 l3

0 0 0

)−1

n

(
l′1 l′2 l′3
0 0 0

)
n′

×
(
l′′1 l′′2 l′′3
0 0 0

)
n′′

3∏
a=1

N (n:n′,n′′)
la ;l′a ,l′′a

[
d
(n′)
l′a
d
(n′′)
l′′a

d
(n)
la

]1/2

× B1/2(n′/2, n′′/2)Ĩ
[
α0, β0 α1, β1 α2, β2 α3, β3

k1 k2 k3

]
(5.5)

in terms of auxiliary 3j -symbols (4.9) of the canonical bases (turning into phase factors of
the type (4.12) for n′ = 2 or n′′ = 2), normalization factors (5.3) and the integrals involving
triplets of Jacobi polynomials (3.2a)–( 3.2e), with parameters

ki = 1
2 (li − l′i − l′′i ) αi = l′′i + n′′/2 − 1 βi = l′i + n′/2 − 1

α0 = n′′/2 − 1 β0 = n′/2 − 1

and

p′
i = 1

2 (l
′
j + l′k − l′i) p′′

i = 1
2 (l

′′
j + l′′k − l′′i )

pi = 1
2 (lj + lk − li) (i, j, k = 1, 2, 3).

The number of terms in expansion (3.2e) of integrals involving triplets of Jacobi polynomials
never exceeds

Bi = min
(

1
6 (pi + 1)3, (p

′′
i + 1)(kj + 1)(kk + 1), 1

2 (p
′′
i + 1)(pi + 1)2)

)
(5.6a)

and decreases in the intermediate region (e.g. when p′′
i < pi + 1), described by the volume of

the obliquely truncated rectangular parallelepiped of (p′′
i + 1)× (kj + 1)× (kk + 1) size.

In particular, in the case of n′′ = 2 parameters l′′1 , l
′′
2 , l

′′
3 in 3j -symbols (5.5) should be

replaced bym′′
1 = ±l′′1 ,m′′

2 = ±l′′2 ,m′′
3 = ±l′′3 such thatm′′

1 +m′′
2 +m′′

3 = 0. Hence at least one
parameter p′′

i′ = 0 and the number of terms in the i ′th double-sum version of (3.2e) (related to
(3.3a) and to the Kampé de Fériet [20] function F 2:2

2:1 ) does not exceed

B̃i′ = min
(

1
2 (pi′ + 1)2, (kj ′ + 1)(kk′ + 1)

)
(5.6b)

although for small values of pi such that Bi < B̃i′ the ith version of (3.2e) or (3.3b) may be
more preferable.

We may also express the isofactors of the CG coefficients for the restriction SO(n) ⊃
SO(n′)× SO(n′′) in terms of the isofactors of 3j -symbols,[
l1 l2 l3

l′1, l
′′
1 l′2, l

′′
2 l′3, l

′′
3

]
(n:n′n′′)

= (−1)ϕ

 d
(n)

l3

d
(n′)
l′3
d
(n′′)
l′′3

1/2(
l1 l2 l3

l′1, l
′′
1 l′2, l

′′
2 l′3, l

′′
3

)
(n:n′n′′)

(5.7)

with the phase ϕ = 0 (since l3 − l′3 − l′′3 is even), when ψn,ψn′ , ψn′′ are taken to be equal to
J, J ′, J ′′, respectively, in all the auxiliary 3j -symbols (4.9), in contrast to

ϕ = m′′
3δn′′2 +m′

3δn′2 + l′′3 δn′′3 + l′3δn′3
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appearing when ψn is taken to be zero for n � 4. Again we need to replace, respectively, for
n′′ = 2 parameters l′′1 , l

′′
2 , l

′′
3 on the left-hand side by m′′

1,m
′′
2,m

′′
3 such that l′′1 = |m′′

1|, l′′2 =
|m′′

2|, l′′3 = |m′′
3| (with m′′

1 + m′′
2 = m′′

3) and on the right-hand side by m′′
1,m

′′
2,−m′′

3, as
well as for n′ = 2 parameters l′1, l

′
2, l

′
3 on the left-hand side by m′

1,m
′
2,m

′
3 such that

l′1 = |m′
1|, l′2 = |m′

2|, l′3 = |m′
3| (m′

1 +m′
2 = m′

3) and on the right-hand side by m′
1,m

′
2,−m′

3.
Regarding the different triple-sum versions (3.6a)–(3.6d ) of integrals involving triplets

of Gegenbauer and Jacobi polynomials and comparing expressions (5.5) and (4.7), we derive
the following duplication relation between the generic SO(n) ⊃ SO(n − 1) and special
SO(2n + 2) ⊃ SO(n− 1)× SO(n− 1) isofactors of the 3j -symbols:(

2l1 2l2 2l3
l′1, l

′
1 l′2, l

′
2 l′3, l

′
3

)
(2n−2:n−1,n−1)

=
(

2l1 2l2 2l3
0 0 0

)−1

2n−2

(
l1 l2 l3

l′1 l′2 l′3

)
(n:n−1)

×
(
l1 l2 l3

0 0 0

)
n

(
l′1 l′2 l′3
0 0 0

)
n−1

3∏
a=1

[
d
(n)

la
d
(n−1)
l′a

d
(2n−2)
2la

]1/2

(5.8)

with auxiliary 3j -symbols (4.9) of the canonical bases and the irrep dimensions appearing.

6. Basis states and coupling coefficients of the class-two (mixed tensor) representations
of U (n)

Mixed tensor irreducible representations [p + q, qn−2, 0] ≡ [p, 0̇,−q] of U(n) containing
scalar irrep [qn−1] ≡ [0̇] of subgroupU(n− 1) (with repeating zeros denoted by 0̇) are called
class-two irreps [40, 41]; their canonical basis states for the chainU(n) ⊃ U(n−1)×U(1) ⊃
· · · ⊃ U(2)× U(1) ⊃ U(1) are labelled by the set

Q(n) = (p(n−1), q(n−1);Q(n−1)) = (p(n−1), q(n−1);p(n−2), q(n−2); . . . , p(2), q(2);p(1))
where

p = p(n) � p(n−1) � · · · � p(2) � 0 and q = q(n) � q(n−1) � · · · � q(2) � 0

are integers, with p(2) � p(1) � −q(2) in addition, and parameters

M(1) = p(1),M(2) = p(2) − q(2) − p(1), . . . ,M(r) = p(r) − q(r) − p(r−1) + q(r−1)

which correspond to irreps of subgroupsU(1), beginning from the last one.
The dimension of representation space is

d
(n)

[p,0̇,−q]
= (p + q + n− 1)(p + 1)n−2(q + 1)n−2

(n− 1)!(n− 2)!
. (6.1)

Special matrix elements D
n[p,0̇,−q]
Q(n);0 (g) of U(n) irrep [p, 0̇,−q] with zero as the

second index for the scalar of subgroup U(n − 1) depend only on the rotation angles
ϕn, ϕn−1, . . . , ϕ2, ϕ1, where 0 � ϕi � 2π corresponds to the ith diagonal subgroup U(1)
(i = 1, 2, . . . , n), and θn, θn−1, . . . , θ3, θ2, where 0 � θr � π/2, corresponds to the
transformation∣∣∣∣cos θr i sin θr

i sin θr cos θr

∣∣∣∣
in the plane of (r−1)st and rth coordinates (r = 2, 3, . . . , n) and may be factorized as follows:

D
n[p,0̇,−q]
Q(n);0 (g) = eiMnϕnD

n[p,0̇,−q]
[p′,0̇,−q ′]0;0(θn)D

n−1[p′,0̇,−q ′]
Q(n−1);0 (g′) (6.2)



7340 S Ališauskas

with appropriate normalization in the case of integration over the group volume with measure

(n− 1)!

2πn

n∏
r=2

sin2r−3 θr cos θr dθr

n∏
i=1

dϕi.

Here D
n−1[p′,0̇,−q ′]
Q(n−1);0 (g′) are the matrix elements of U(n − 1) irrep [p′, 0̇,−q ′] =

[p(n−1), 0̇,−q(n−1)] (with parameters obtained after omitting ϕn and θn. Special matrix
elements of the U(r) irreducible representation [p, 0̇,−q] with the U(r − 1) irrep labels
[p′, 0̇,−q ′] and 0 and SU(r − 2) irrep label 0 for rotation with angle θr in the (xr, xr−1) plane
are written in terms of the D-matrices of SU(2) as follows:

D
r[p,0̇,−q]
[p′,0̇,−q ′]0;0(θr) =

[
(p + q + r − 1)d(r−1)

[p′,0̇,−q ′]

]1/2 [
(r − 1)d(r)

[p,0̇,−q]

]−1/2

× (i sin θr)
−r+2P

(p+q+r−2)/2
p′+(q−p+r−2)/2,−(p−q+r−2)/2−q ′(cos 2θr) (6.3)

and further, taking into account the identity P lm,n(x) = P l−n,−m(x), in terms of the Jacobi
polynomials

D
r[p,0̇,−q]
[p′,0̇,−q ′]0;0(θr) = N r[p,0̇,−q]

[p′,0̇,−q ′]

[
d
(r−1)
[p′,0̇,−q ′]

(
(r − 1)d(r)

[p,0̇,−q]

)−1
]1/2

× (i sin θr)
p′+q ′

(cos θr)
|M |P (L

′+r−2,|M |)
K (cos 2θr) (6.4)

where

K = min(p − p′, q − q ′) M = p − q − p′ + q ′ L′ = p′ + q ′

and

N r[p,0̇,−q]
[p′,0̇,−q ′] =

[
(p + q + r − 1)K!(p + q + r − 2 −K)!

(|M| +K)!(p + q + r − 2 − |M| −K)!

]1/2

(6.5a)

=
[
(p + q + r − 1)K!(L′ + r − 2 + |M| +K)!

(|M| +K)!(L′ + r − 2 +K)!

]1/2

. (6.5b)

Factor ip
′+q ′

, also appeared in [41] (but was absent in the generic expressions of D-matrix
elements [36, 42]), ensures the complex conjugation relation

D
r[p,0̇,−q]
[p′,0̇,−q ′]0;0(θr) = (−1)p

′+q ′
D
r[q,0̇,−p]
[q ′ ,0̇,−p′]0;0(θr) (6.6)

in accordance with the SU(2) case and the system of phases of Baird and Biedenharn [43],
which is correlated to the positive signs of the Gel’fand–Tsetlin matrix elements [35, 36, 44]
of the U(n) generators Er,r−1. Alternatively, the states 
p′+q ′,p+q,M(θr), as defined in
[4, 40] and related to the hyperspherical harmonics, correspond to the Jacobi polynomials
with interchanged parameters α and β. Hence the variables are mutually reflected (here and
in [4, 40] as cos 2θr and (−cos 2θr)).

Using the integration over group (cf [36, 40, 45]), the corresponding 3j -symbols of the
class-two irreps for the chain U(n) ⊃ U(n− 1)× U(1) ⊃ · · · ⊃ U(2)× U(1) ⊃ U(1) may
be factorized as follows:∑
ρ

(
[p1, 0̇,−q1] [p2, 0̇,−q2] [p3, 0̇,−q3]
Q1(n) Q2(n) Q3(n)

)ρ
n

×
(

[p1, 0̇,−q1] [p2, 0̇,−q2] [p3, 0̇,−q3]
[0̇] [0̇] [0̇]

)ρ
n

=
∫
U(n)

dgDn[p1,0̇,−q1]
Q1(n);0 (g)D

n[p2,0̇,−q2]
Q2(n);0 (g)D

n[p3,0̇,−q3]
Q3(n);0 (g) (6.7a)
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= δp1+p2+p3,q1+q2+q3(−1)p
′
1+p′

2+p′
3+K1+K2+K3(n− 1)−1/2

×
3∏
a=1

N n[pa,0̇,−qa ]
[p′
a ,0̇,−q ′

a ]

[
d
(n−1)
[p′
a ,0̇,−q ′

a ]

(
d
(n)

[pa,0̇,−qa ]

)−1
]1/2

× Ĩ
[

0, n−2 |M1|, L′
1 +n−2 |M2|, L′

2 +n−2 |M3|, L′
3 +n−2

K1 K2 K3

]
×
∑
ρ′

(
[p′

1, 0̇,−q ′
1] [p′

2, 0̇,−q ′
2] [p′

3, 0̇,−q ′
3]

Q′
1(n) Q′

2(n) Q′
3(n)

)ρ′

n−1

×
(

[p′
1, 0̇,−q ′

1] [p′
2, 0̇,−q ′

2] [p′
3, 0̇,−q ′

3]
[0̇] [0̇] [0̇]

)ρ′

n−1

. (6.7b)

Hereρ and ρ ′ are the multiplicity labels of theU(n) andU(n−1) scalars in the decompositions
[p1, 0̇,−q1] ⊗ [p2, 0̇,−q2] ⊗ [p3, 0̇,−q3] and [p′

1, 0̇,−q ′
1] ⊗ [p′

2, 0̇,−q ′
2] ⊗ [p′

3, 0̇,−q ′
3].

The integral involving the product of three Jacobi polynomials that appeared in (6.7b) also
corresponds to the SO(2n) ⊃ SO(2n− 2)× SO(2) isofactor of 3j -symbol(

p1 + q1 p2 + q2 p3 + q3

p′
1 + q ′

1,M1 p′
2 + q ′

2M2 p′
3 + q ′

3,M3

)
(2n:2n−2,2)

considered in the previous section and may be expressed (after some permutations of the
parameters) as a double sum by means of (3.3a) or (3.3b). For normalization of the
corresponding 3j -symbols of U(n) ⊃ U(n− 1) we may use the square root of∑
ρ

[(
[p1, 0̇,−q1] [p2, 0̇,−q2] [p3, 0̇,−q3]

[0̇] [0̇] [0̇]

)ρ
n

]2

= δp1+p2+p3,q1+q2+q3

× (−1)min(p1,q1)+min(p2,q2)+min(p3,q3)
(n− 1)![(n− 2)!]2∏3

a=1 (min(pa, qa) + 1)n−2

× Ĩ
[

0, n−2 |p1−q1|, n−2 |p2−q2|, n−2 |p3−q3|, n−2
min(p1, q1) min(p2, q2) min(p3, q3)

]
(6.8)

with non-vanishing extreme 3j -symbols on the left-hand side for a single value of the
multiplicity label ρ, which is not correlated to the canonical [46–48] and other (see [49–
51]) external labelling schemata of the coupling coefficients of U(n). In contrast to the
particular 3j -symbols (4.9) of SO(n), equation (6.8) is summable only in the multiplicity-free
cases. In addition to three double-sum versions of (3.3a) and (3.3b), integral on the right-hand
side of (6.8) may also be expressed as three different double-sum series by means of (3.2e),
taking into account the symmetry relation (3.2b). Of course, (6.8) is always positive as an
analogue of the denominator function of the SU(3) canonical tensor operators [46–48, 52].

Taking into account (6.6) we may also obtain an expression for the Clebsch–Gordan
coefficients of the class-two representation of U(n)∑
ρ

[
[p1, 0̇,−q1] [p2, 0̇,−q2]

Q1(n) Q2(n)

∣∣∣∣[p, 0̇,−q]
Q(n)

]ρ
n

×
[
[p1, 0̇,−q1] [p2, 0̇,−q2]

[0̇] [0̇]

∣∣∣∣[p, 0̇,−q]
[0̇]

]ρ
n

= d
(n)

[p,0̇,−q]

∫
U(n)

dgDn[p1,0̇,−q1]
Q1(n);0 (g)D

n[p2,0̇,−q2]
Q2(n);0 (g)D

n[p,0̇,−q]
Q(n);0 (g) (6.9)
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with the integrals involving the product of three Jacobi polynomials and the CG coefficients
of U(n − 1) of the same type and some phase and irrep dimension factors. In particular, we
obtain the following expression for isofactors of special SU(3) Clebsch–Gordan coefficients
(which perform the coupling of the SU(3)-hyperspherical harmonics):[
(a′b′) (a′′b′′) (ab)0

(z′)i ′ (z′′)i ′; (z)i

]

= δa′+a′′−a,b′+b′′−b(−1)i
′+i′′−i+K1+K2−K 1

2

[
(2i ′ + 1)(2i ′′ + 1)

(2i + 1)d(3)(a′b′)d
(3)
(a′′b′′)

]1/2

×
{

(−1)min(a′,b′)+min(a′′,b′′)+min(a,b)

(min(a′, b′) + 1) (min(a′′, b′′) + 1) (min(a, b) + 1)

× Ĩ
[

0, 1 |a′ − b′|, 1 |a′′ − b′′|, 1 |a − b|, 1
min(a′, b′) min(a′′, b′′) min(a, b)

]}−1/2

×N 3[a′,0,−b′]
[i′−z′,−i′−z′]N 3[a′′,0,−b′′]

[i′′−z′′,−i′′−z′′]N 3[a,0,−b]
[i−z,−i−z]

[
i ′ i ′′ i

z′ z′′ z

]
× Ĩ

[
0, 1 |M ′|, 2i ′ + 1 |M ′′|, 2i ′′ + 1 |M|, 2i + 1

K ′ K ′′ K

]
. (6.10)

Here M = a − b + 2z,K = min(a + z − i, b − z − i) in the notation of [49, 51], with (ab)
for the mixed tensor irreps, where a = p(3), b = q(3) and the basis states are labelled by
the isospin i = 1

2 (p(2) + q(2)), its projection iz = p(1) − 1
2 (p(2) − q(2)) and the parameter

z = 1
3 (b−a)− 1

2y = 1
2 (q(2)−p(2)) instead of the hyperchargey = p(2)−q(2)− 2

3 (p(3)−q(3)).

7. Concluding remarks

In this paper, we reconsidered the 3j -symbols and Clebsch–Gordan coefficients of
the orthogonal SO(n) and unitary U(n) groups for all three representations corresponding
to the (ultra)spherical or hyperspherical harmonics of these groups (i.e. irreps induced [35]
by the scalar representations of the SO(n − 1) and U(n − 1) subgroups, respectively). For
the corresponding isoscalar factors of the 3j -symbols and coupling coefficients, the ordinary
integrations involving triplets of the Gegenbauer and the Jacobi polynomials yield the most
symmetric triple-sum expressions, however, without the apparent triangle conditions. These
conditions are visible and efficient only in expressions of the type [6, 15] derived after
complicated analytical continuation procedures of special Sp(4) ⊃ SU(2)×SU(2) isofactors
(cf [14, 17]). Actually, only for a fixed integer shift parameter pi = 1

2 (lj + lk − li) is it
evident that the corresponding integrals involving triplets of the Gegenbauer and the Jacobi
polynomials are rational functions of remaining parameters. Practically, the concept of the
canonical unit tensor operators (see section 21 of chapter 3 of [26]) for symmetric irreps of
SO(n) may be formulated only under such a condition.

Similarly as special terminating double-hypergeometric series of Kampé de Fériet-type
[19–21, 53] correspond to the stretched 9j coefficients of SU(2), the definite terminating triple-
hypergeometric series correspond either to the semistretched isofactors of the second kind [14]
of Sp(4) or to the isofactors of the symmetric irreps of the orthogonal group SO(n) in the
canonical and semicanonical (tree-type) bases. Our relation (2.6a)–(2.6c) (which is significant
within the framework of Sp(4) isofactors) is a triple-sum generalization of transformation
formula (9) of [21] for terminating F 1:2,2

1:1,1 Kampé de Fériet series with a fixed single-integer
non-positive parameter, restricting all summation parameters. (This restriction is hidden in
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equations (2.7a) and (2.7b), and rearranged for the aims of section 3.) Relations (2.6a)–(2.6c),
with intermediate formula (2.6b), were derived using the transformation formulae [19, 21] of
the double series, treated as stretched 9j coefficients. The relation (3.2c)–(3.2e) (important
within the framework of SO(n) isofactors) cannot be associated with any transformation
formula [21] for terminating F 1:2,2

1:1,1 Kampé de Fériet series with the same (single or double)
parameters, restricting summation.

The wish may arise to prove identity (3.2c)–(3.2e) by a direct transformation procedure,
without using the auxiliary rearrangement of section 2. Initially, the relation between (3.2c) and
analytical continuation of (2.6b) (with the same three parameters restricting summation in the
both cases) may be proved, using composition of transformation formulae of section 3 of [21]
for the double sum over zj and zk in (3.2c) as terminating F 1:2,2

1:1,1 series into terminating F 1:2,2
0:2,2

series. Furthermore, the double-sum version of relation between (3.2e) (e.g. for kk = zk = 0)
and the result of the previous step need to be considered. Both the sums over zl (for α0 and
β0 integers) can be recognized in the same Clebsch–Gordan coefficient of SU(2). Hence, the
identity between two 3F2(1) series [28, 29, 54] (for arbitrary α0 and β0) induces the identity
between the terminating double series. In its turn, inserting the latter one induces the identity
between the terminating triple series, in which parameters restricting summation coincide only
in part. Direct transformation of single 3F2(1) series [28, 29, 54] is useless for the proof of
identities (2.6a)–(2.6c) and (3.2c)–(3.2e).

Expressions (2.6a) and (2.6c) corresponding to special Sp(4) isofactors are summable
or turn into the terminating Kampé de Fériet [20, 21] series F 2:2

2:1 for extreme basis states of
Sp(4) ⊃ SU(2)×SU(2). Alternatively, in accordance with (3.6c) and (3.2e), the expressions
for special isofactors of SO(n) and SU(n) are summable in the case of the stretched couplings
of the group representations and turn into the terminating Kampé de Fériet series F 2:2

2:1 for the
irreps of subgroups in a stretched situation, including the generic cases for the restrictions
SO(n) ⊃ SO(n − 1), SO(n) ⊃ SO(n − 2) × SO(2) and U(n) ⊃ U(n − 1). Taking into
account the fact that the F 2:2

2:1 -type series with five independent parameters also appeared as
the denominator (normalization) functions of the SU(3) and uq(3) canonical tensor operators
[46–48] (cf (2.8) and section 2 of [52]), the q-extension of relation (3.3a)–(3.3b) from the
classical SU(n) case may be suspected.

In a following paper, the fourfold [16, 30] and (corrected) [16] triple-sum expressions for
the recoupling (6l) coefficients of symmetric irreps of SO(n) will be rearranged into double
F 1:4

1:3 -type series.

Appendix A. Special cases of triple sums in 11j coefficients

Rearranging (3.12) in the inverse order that was used for the transition from (2.6a) through
(2.7a) to (3.2c), we derived an expression for a special triple sum of the type (2.2) with the
coinciding two first rows of the corresponding array,

S̃

 K1 j 1
1 j 2

1 j 3
1

K1 j 1
1 j 2

1 j 3
1

2K1 j 1 j 2 j 3


= (−1)j

1
1 +j2

1 +j3
1 −K1−j3

[1 + (−1)j
1+j2+j3−2K1 ]2j

1+j2−2K1−1(2j 3 − 1)!j 3!

×
2∏
a=1

(
2ja1 + ja + 1

)
!(ja!)2

(2ja + 1)!
(
2ja1 − ja

)
!

∑
x1,x2,z3

(
j 3

1 − 1
2 (j

3 + δ3) + x3

x3

)
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×
(−1)x3

(−j 3
1 − (j 3 + δ3)/2

)
x3

(−j 3 + 1/2)x3

( 1
2 (δ1 + δ2 − δ3)

K1 + j 3 − ∑3
a=1

(
1
2j

a − xa
))

×
2∏
a=1

(
ja1 + (ja + δa)/2 + 1

)
xa

(j a + 3/2)xa

(
ja1 − 1

2 (j
a + δa)

xa

)
(A.1)

with δi = 0 or 1 such that j i1 − (j i + δi)/2 (i = 1, 2, 3) are integers.
Furthermore, similarly rearranging (3.13), we derived an expression for a special triple

sum S̃[· · ·] of the type (2.2) with the coinciding two first rows and j 1
1 = j 2

1 , j
3
1 = K1:

S̃

 j 3
1 j 1

1 j 1
1 j 3

1

j 3
1 j 1

1 j 1
1 j 3

1

2j 3
1 j 1 j 2 j 3


=

(
2j 3

1 − 2j 1
1

)
!�(1/2)�

(
(j 1 + j 2 + j 3 + 1)/2 − j 3

1

)∏3
a=1 j

a!

24j3
1 +3

∏3
a=1 �

(
j 3

1 + (j 1 + j 2 + j 3 + 3)/2 − ja
)

×
∑
s

(
2j 1

1 + j 1 + 1
)
!
(
2j 1

1 + j 2 + 1
)
!
(
2j 3

1 + j 3 + 1
)
!

s!
(
2j 3

1 − 2j 1
1 − s

)
!
(
j 3

1 + (j 1 − j 2 − j 3)/2 − s
)
!

× [1 + (−1)j
1+j2+j3−2j3

1 ](−1)2j
1
1 +j3

1 −(j1+j2+j3)/2(
j 3

1 + (j 2 − j 3 − j 1)/2 − s
)
!
(
2j 1

1 − j 3
1 + (j 3 − j 1 − j 2)/2 + s

)
!

×
(
2j 1

1 + 1/2
)
s
�
(
2j 3

1 + 3/2 − s
)(

2j 1
1 − j 3

1 + (j 1 + j 2 + j 3)/2 + s + 1
)
!
. (A.2)

Although this sum again corresponds to the balanced (Saalschützian) 4F3(1)-type series
[28, 29], it is not alternating (since it includes even numbers of gamma functions or factorials
in the numerator and the denominator) and cannot be associated with the 6j coefficients of
SU(2). Note that the summable case of (A.2) with j 3

1 = j 1
1 corresponds to (41) of [14].
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[15] Ališauskas S 1983 Fiz. Elem. Chast. At. Yad. 14 1336 (Sov. J. Part. Nucl. 14 563)
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